"Think Before You Speak": Improving Multi-Action Dialog Policy by Planning Single-Action Dialogs

Shuo Zhang¹, Junzhou Zhao^{1*}, Pinghui Wang^{1*}, Yu Li¹, Yi Huang², Junlan Feng²

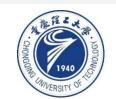
¹MOE KLINNS Lab, Xi'an Jiaotong University, Xi'an 710049, P. R. China

²JIUTIAN Team, China Mobile Research, Beijing 100053, P. R. China

{zs412082986, liyu1998}@stu.xjtu.edu.cn, {junzhou.zhao, phwang}@mail.xjtu.edu.cn, {huangyi, fengjunlan}@chinamobile.com

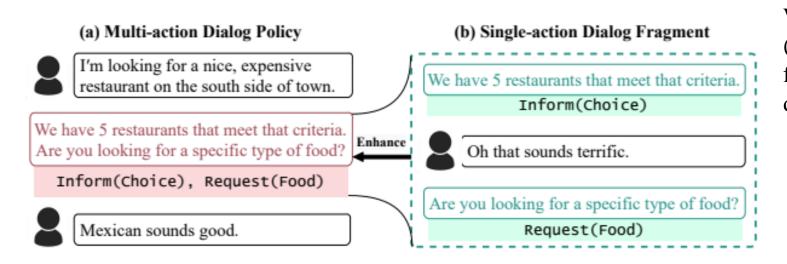
Code: https://github.com/ShuoZhangXJTU/PEDP.

(IJCAI-2022)



- 1. Introduction
- 2. Approach
- 3. Experiments

Introduction



We propose Planning Enhanced Dialog Policy (PEDP), a novel multi-task learning framework that learns single action dialog dynamics to enhance multi-action prediction.

Figure 1: (a) Example dialog under multi-action dialog policy². We propose to learn single-action dialog dynamics (b) to model conditional act combination patterns and enhance multi-action prediction.

²A dialog policy responses by predicting atomic dialog actions represented as "Domain-Intent(Slot)" phrases. We omit the domain ("restaurant") for clarity.

- 一个宏动作,它是一组独立的原子 对话动作,用作当前系统响应。
- 每个原子对话动作都是域名、动作 类型和插槽名称的串联,例如 "hotel-inform-area"。

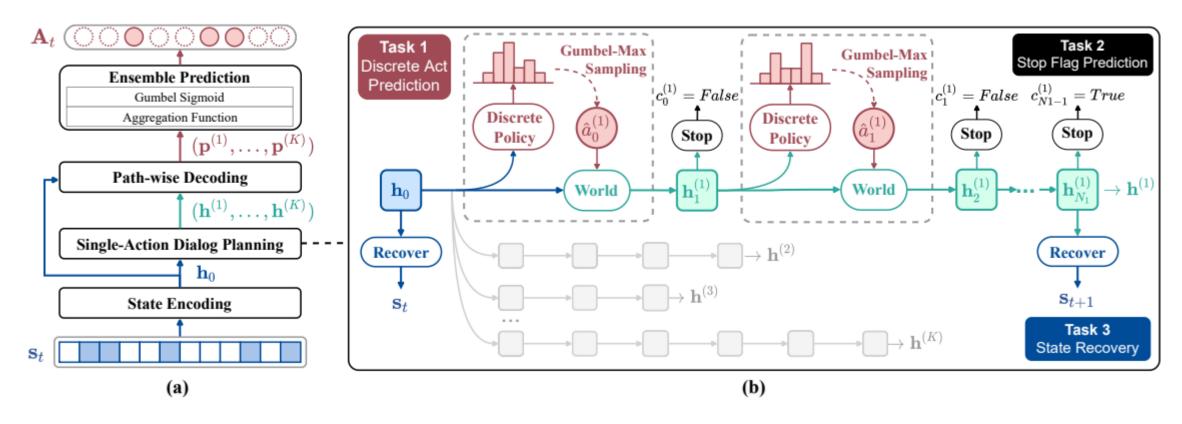


Figure 2: (a) The Planning-Enhanced Dialog Policy (PEDP) framework. It utilizes a *single action dialog planning* module (b) to incorporate contextually relevant contents before multi-action prediction. A total of K single-action dialog procedures are planned, with the k-th path looking ahead N_k steps under single-action dialog dynamics. At each step, the discrete policy model predicts an atomic dialog action a_n given the previous dialog state embedding \mathbf{h}_{n-1} . The world model, which simulates user behavior, responds to the predicted action a_n and updates the dialog state embedding from \mathbf{h}_{n-1} to \mathbf{h}_n .

Ensemble Prediction Gumbel Sigmoid Aggregation Function $(\mathbf{p}^{(1)}, \dots, \mathbf{p}^{(K)})$ Path-wise Decoding $({\bf h}^{(1)},\ldots,{\bf h}^{(K)})$ Single-Action Dialog Planning \mathbf{h}_0 State Encoding (a)

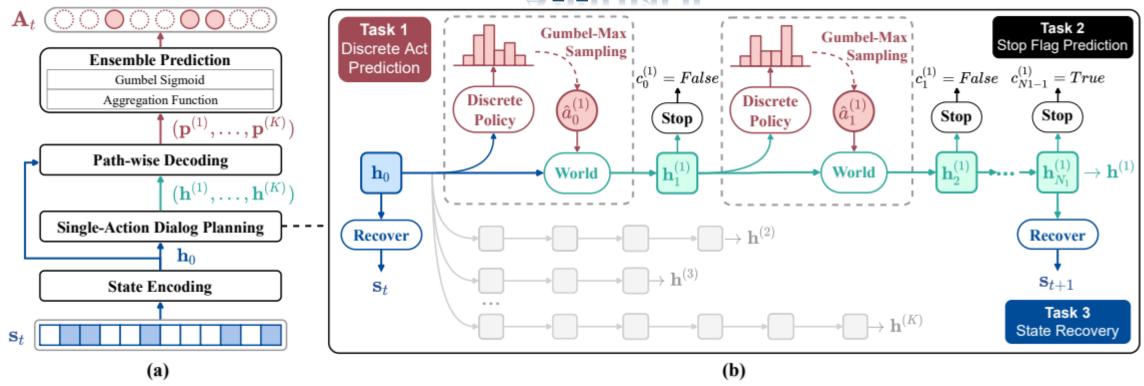
Approach

 \mathbf{s}_t into a dialog state embedding \mathbf{h}_t . Given the current state embedding \mathbf{h}_t , we plan K independent single-action dialog paths, and the k-th dialog path is represented by a vector $\mathbf{h}^{(k)}$, $k=1,\ldots,K$. Our model then decodes each dialog path to a probability distribution over atomic dialog actions, i.e., $\mathbf{p}^{(k)}$. Finally, these distributions $\{\mathbf{p}^{(k)}\}_{k=1}^K$ are aggregated to form a unified distribution, from which atomic dialog actions in the macro-action \mathbf{A}_t are sampled.

State Encoding

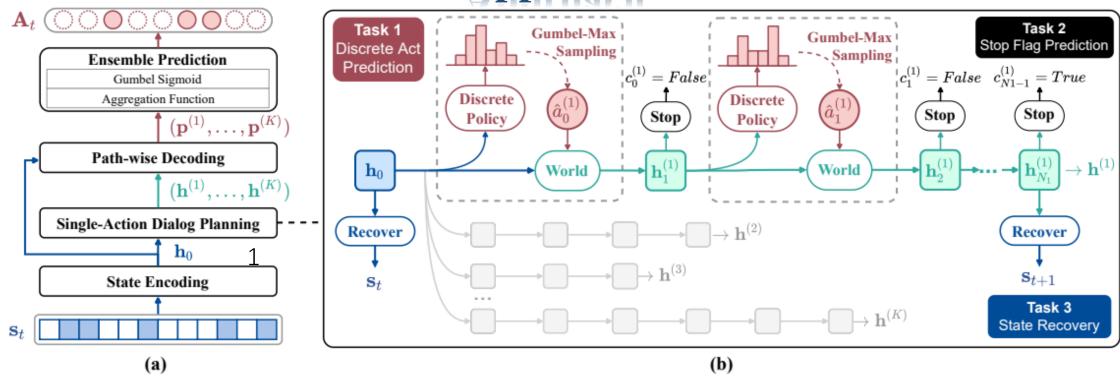
$$\mathbf{h}_t = \text{FFN}_{enc}(\mathbf{s}_t) = \text{ReLU}(\mathbf{s}_t W_1 + b_1) W_2 + b_2. \tag{1}$$

In what follows, this dialog state embedding h_t will serve as the initial dialog state embedding for planning.



Single-Action Dialog Planning

look ahead several steps. Let $\mathbf{h}_{t,n}^{(k)}$ denote the dialog state embedding at the n-th step in the k-th dialog for $n=0,\ldots,N_k$ where N_k is the length of the k-th dialog, and $\mathbf{h}_{t,0}^{(k)}=\mathbf{h}_t$, $\mathbf{h}_{t,N_k}^{(k)}=\mathbf{h}^{(k)}$. The last dialog state embedding $\mathbf{h}^{(k)}$ estimates the hidden vector of the future dialog state \mathbf{s}_{t+1} and summarizes the planned single-action dialog. In what follows, we describe how to plan a single step from $\mathbf{h}_{t,n}^{(k)}$ to obtain $\mathbf{h}_{t,n+1}^{(k)}$.

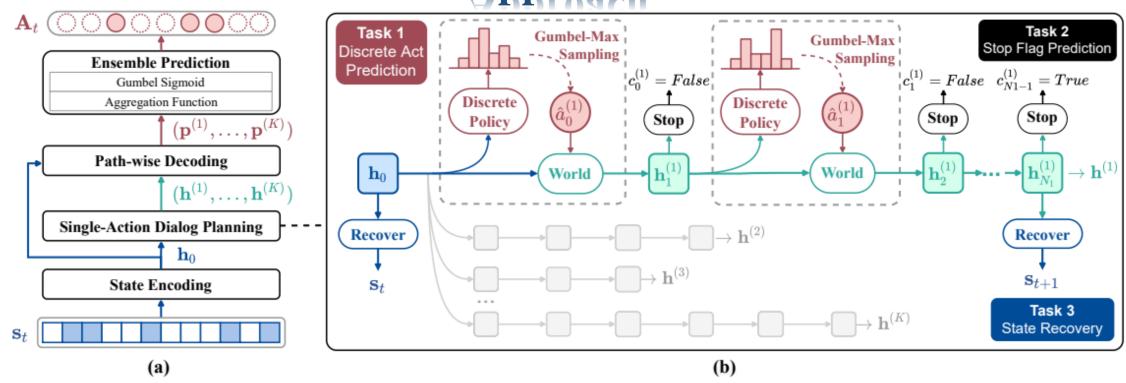


Single-Action Dialog Planning

$$a_n = \text{DP}(\mathbf{h}_n) \triangleq \text{GumbelSoftmax}^{(\tau_d)}(\mathbf{h}_n W_d + b_d)$$

 $\mathbf{h}_{n+1} = \text{World}(\mathbf{h}_n, a_n) \triangleq \text{GRU}(\mathbf{h}_n, \text{Emb}(a_n)).$ (2)

Here, DP is implemented as a single linear layer followed by a Gumbel-Softmax function [Jang $et\ al.$, 2016] parameterized by τ_d . The Gumbel-Softmax function draws an atomic dialog action sample from a categorical distribution, diversifying the planned dialogs. τ_d is selected to balance the approximation bias and the magnitude of gradient variance. The world model is implemented using a GRU to model dialog state transitions, and $\text{Emb}(a_n)$ denotes the embedding vector of atomic dialog action a_n .



Single-Action Dialog Planning

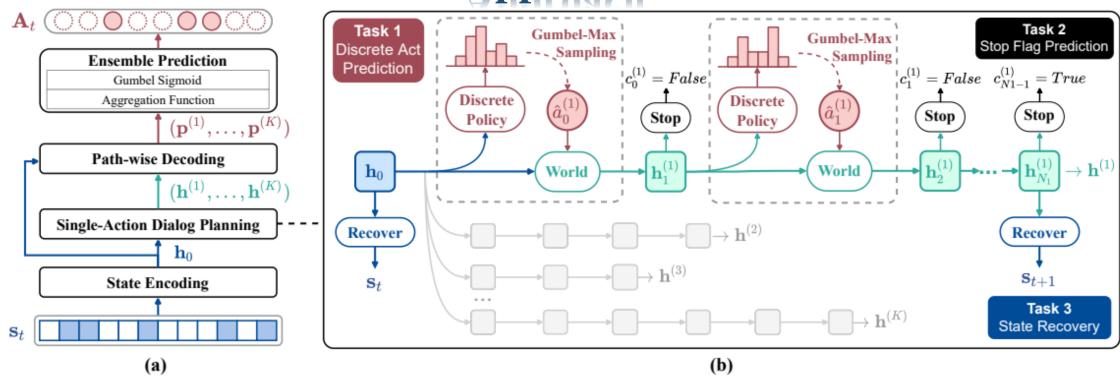
$$c_n = \text{GumbelSoftmax}^{(\tau_s)}(\text{FFN}_{st}([\mathbf{h}_0 : \mathbf{h}_{n+1}]))$$

where c_n is a binary variable, ":" denotes vector concatenation, and FFN is a 2-layer fully-connected feed-forward network using the ReLU activation function in the middle layer.

$$\mathbf{s}_t = \text{Recover}(\mathbf{h}_0)$$

$$\mathbf{s}_{t+1} = \text{Recover}(\mathbf{h}_N)$$
(3)

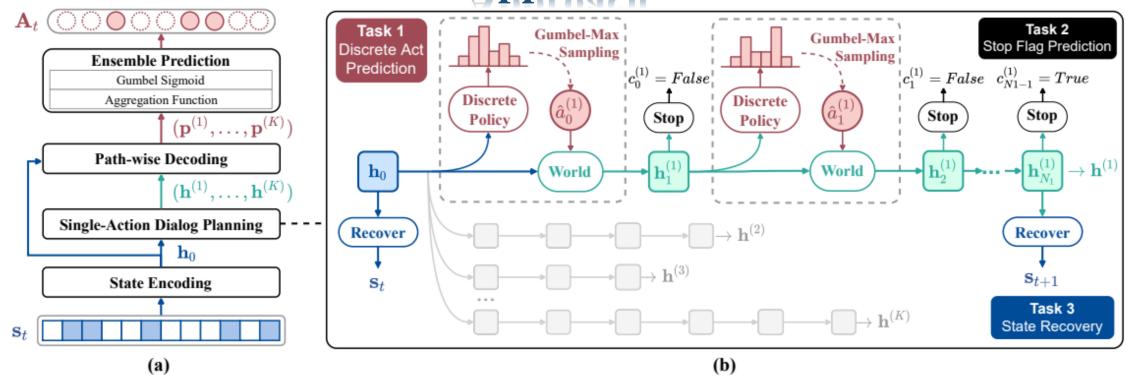
Here, Recover is implemented by a 2-layer FFN and is only used during the training stage.



Path-wise Decoding

Specifically, we instantiate the decoder $\mathbf{p}^{(k)} = [\mathbf{p}_1^{(k)} : \dots : \mathbf{p}_M^{(k)}]$, where k refers to the planned path and M is the size of the action space. Each $\mathbf{p}_m^{(k)}, m = 1, \dots, M$ is a vector computed as:

$$\mathbf{p}_m^{(k)} = \text{FFN}_m^{dec}([\mathbf{h}_0 : \mathbf{h}^{(k)}]).$$



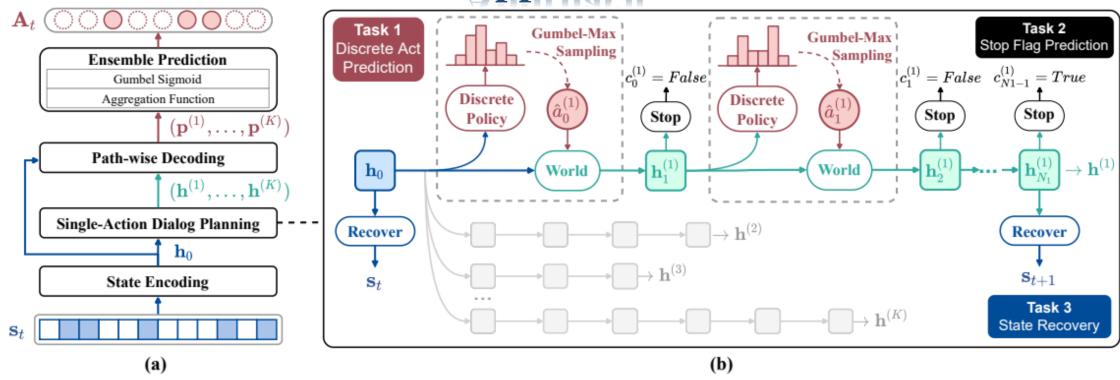
Ensemble Prediction

$$\mathbf{P}_t = \operatorname{Aggr}(\mathbf{p}^{(1)}, \dots, \mathbf{p}^{(K)})$$

where $Aggr(\cdot)$ is the mean average in our case.

$$\mathbf{A}_t = \text{GumbelSigmoid}(\mathbf{P}_t) = \frac{e^{(\mathbf{P}_t + g_1)/\tau}}{e^{(\mathbf{P}_t + g_1)/\tau} + e^{(\mathbf{P}_t + g_2)/\tau}}$$

Here GumbelSigmoid(\cdot) is a modification of the Gumbel-Softmax function, regarding sigmoid as a softmax with two logits p and 0. τ denotes the temperature factor, g_1 and g_2 are Gumbel noises.



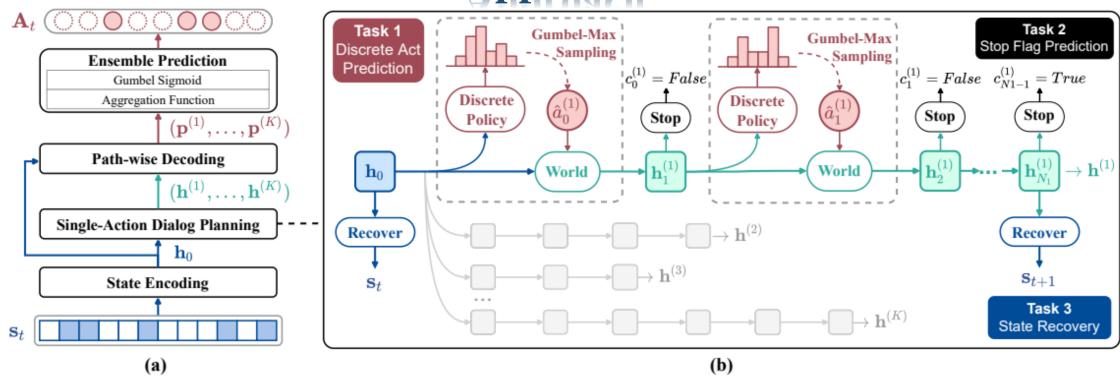
Training

Task 1: Discrete Act Prediction (DAP)

$$p(\boldsymbol{a}|\mathbf{h}_0) = p_{\theta}(a_0|\mathbf{h}_0) \prod_{n=1}^{N-1} \underbrace{p_{\theta}(a_n|\mathbf{h}_n)}_{\text{DAP}} \underbrace{p_{\phi}(\mathbf{h}_n|a_{n-1},\mathbf{h}_{n-1})}_{\text{state transition}}$$

where θ and ϕ denotes trainable parameters for the discrete dialog policy model and the world model, respectively.

$$\boldsymbol{a} = (a_0, \dots, a_{N-1})$$



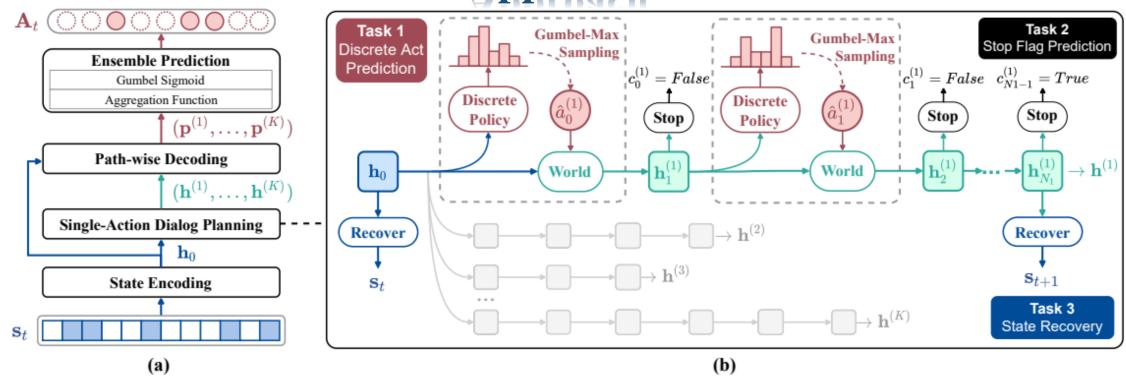
Training

Task 2: Stop Flag Prediction (SFP)

$$p(\boldsymbol{c}|\mathbf{h}_0) = \prod_{n=0}^{N-1} \underbrace{p_{\gamma}(c_n|\mathbf{h}_{n+1},\mathbf{h}_0)}_{\text{SFP}} \underbrace{p_{\phi,\theta}(\mathbf{h}_{n+1}|\mathbf{h}_n)}_{\text{1-step planning}}$$

$$\boldsymbol{c} = (c_0, \dots, c_{N-1})$$

where γ parameterizes the stop prediction model, the joint probability of $p_{\phi,\theta}(\mathbf{h}_{n+1}|\mathbf{h}_n)$ is factorized as $p_{\phi}(\mathbf{h}_{n+1}|a_n,\mathbf{h}_n)p_{\theta}(a_n|\mathbf{h}_n)$ of state transition and discrete act prediction.

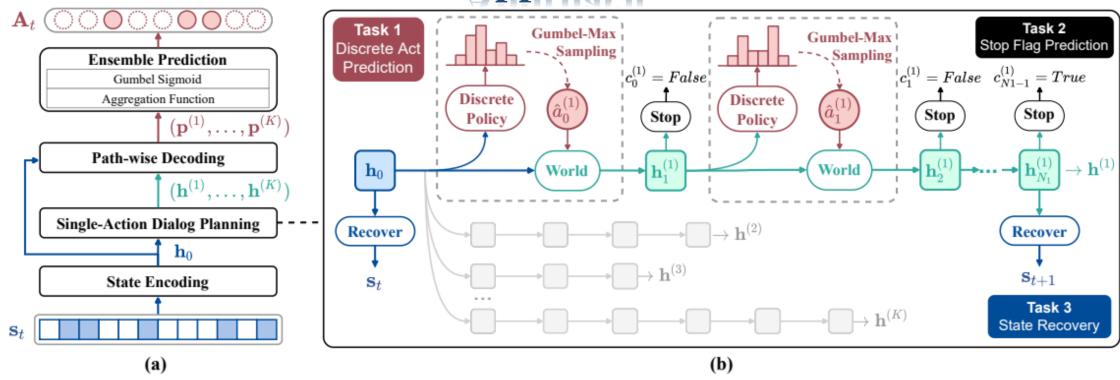


Training Task 3: State Recovery (SR)

$$p(\mathbf{s}_t) = \underbrace{p_{\zeta}(\mathbf{s}_t|\mathbf{h}_0)}_{\text{SR}} \underbrace{p_{\eta}(\mathbf{h}_0|\mathbf{s}_t)}_{\text{state encoding}}$$

$$p(\mathbf{s}_{t+1}|\mathbf{s}_t) = \underbrace{p_{\zeta}(\mathbf{s}_{t+1}|\mathbf{h}_N)}_{\text{SR}} \underbrace{p_{\eta}(\mathbf{h}_0|\mathbf{s}_t)}_{\text{state encoding}} \prod_{n=0}^{N-1} \underbrace{p_{\phi,\theta}(\mathbf{h}_{n+1}|\mathbf{h}_n)}_{\text{1-step planning}}$$

where η and ζ denotes trainable parameters for state encoder and the Recover, respectively. The joint probability $p_{\phi,\theta}(\mathbf{h}_{n+1}|\mathbf{h}_n)$ is the same as explained in Task 2.



Training

Task 4: Multi-Action Prediction (MAP)

$$p(\mathbf{A}_t|\mathbf{s}_t) = \underbrace{p_{\omega}(\mathbf{A}_t|\mathbf{h}_0,\mathbf{h}_N)}_{\text{MAP}} \underbrace{p_{\eta}(\mathbf{h}_0|\mathbf{s}_t)}_{\text{state encoding}} \prod_{n=0}^{N-1} \underbrace{p_{\phi,\theta}(\mathbf{h}_{n+1}|\mathbf{h}_n)}_{\text{1-step planning}}$$

where ω denotes trainable parameters for the decoder. The rest is the same as explained in Task 3.

Experiments

	MultiWOZ						
Agent	Turn	Match	Rec	F1	Success		
DiaMultiClass	11.46 ±0.56	$0.68 \pm 3.9\%$	$0.81 \pm 3.2\%$	$0.81 \pm 2.1\%$	67.3 ± 3.69		
+ sample	9.23 ± 0.2	$0.82 \pm 1.1\%$	$0.90 \pm 1.8\%$	$0.77 \pm 1.2\%$	81.4 ± 1.78		
DiaSeq (beam)	9.06 ± 0.67	$0.81 \pm 0.4\%$	$0.9 \pm 1.2\%$	$0.86 \pm 0.9\%$	81.4 ± 0.16		
greedy	10.35 ± 0.04	$0.68 \pm 1.5\%$	$0.80 \pm 0.5\%$	$0.77 \pm 0.5\%$	67.7 ± 1.02		
+ sample	8.82 ± 0.1	$0.86 \pm 0.6\%$	$0.93 \pm 0.4\%$	$0.81 \pm 0.5\%$	86.9 ± 0.49		
DiaMultiDense	9.66 ± 0.15	$0.85 \pm 0.6\%$	$0.94 \pm 0.4\%$	$0.87 \pm 0.6\%$	86.3 ± 0.64		
 sample 	12.75 ± 0.77	$0.61 \pm 6\%$	$0.72 \pm 5.4\%$	$0.80 \pm 2.3\%$	58.4 ± 6.05		
gCAS	11.69 ± 0.53	$0.56 \pm 1.4\%$	$0.72 \pm 0.4\%$	$0.76 \pm 1.4\%$	58.8 ± 2.82		
GP-MBCM ⁵	2.99	0.44	-	0.19	28.9		
ACER ⁵	10.49	0.62	-	0.78	50.8		
PPO 5	15.56	0.60	0.72	0.77	57.4		
ALDM ⁵	12.47	0.69	-	0.81	61.2		
GDPL	7.54 ± 0.43	$0.84 \pm 0.9\%$	$0.89 \pm 2.2\%$	$0.88 \pm 1.2\%$	83.2 ± 1.48		
DiaAdv	8.90 ± 0.18	$0.87 \pm 0.9\%$	$0.94 \pm 0.75\%$	$0.85 \pm 0.58\%$	87.6 ± 0.9		
- sample	11.9 ± 0.88	$0.62 \pm 5.9\%$	$0.73 \pm 4.6\%$	$0.80 \pm 2.1\%$	61.7 ± 5.59		
PEDP	8.69 ±0.15	0.88 ±1.3%	0.97 ±0.4%	$0.87 \pm 1.1\%$	90.6 ±0.68		
 planning 	9.66 ±0.15	$0.85 \pm 0.6\%$	$0.94 \pm 0.4\%$	$0.87 \pm 0.6\%$	86.3 ± 0.64		
 ensemble 	9.25 ± 0.43	$0.88 \pm 1.97\%$	$0.96 \pm 0.8\%$	$0.85 \pm 2.5\%$	89.1 ± 1.74		
- sample	8.85 ±0.22	$0.82 \pm 2.5\%$	$0.93 \pm 1.4\%$	$0.86 \pm 1.6\%$	83.4 ± 1.01		

Table 1: Interactive evaluation results. We simulate 1,000 dialogs per run and report the mean and standard deviation over 5 runs.

Experiments

	MultiWOZ			SGD (scaling)		
Agent	F1%	Precision%	Recall%	F1%	Precision%	Recall%
DiaMultiClass	39.41 ±1.08	54.59 ±1.71	34.32 ± 1.32	58.09 ±0.63	81.29 ±1.13	46.29 ±0.57
+ sample	38.91 ± 0.74	47.28 ± 0.68	37.56 ± 1.08	58.03 ± 0.64	81.48 ± 0.18	46.14 ± 0.80
DiaSeq (beam)	44.64 ±2.08	51.91 ± 0.99	43.66 ± 2.27	63.13 ±0.18	86.04 ± 0.5	50.83 ± 0.30
greedy	48.34 ±0.45	54.71 ± 0.21	48.84 ± 0.84	63.21 ± 0.35	86.31 ± 0.7	50.85 ± 0.40
+ sample	37.82 ±0.45	43.02 ± 0.48	38.91 ± 0.64	62.64 ±1.03	85.54 ± 1.62	50.40 ± 0.76
DiaMultiDense	35.92 ±0.54	51.93 ± 0.33	30.10 ± 0.69	57.85 ±0.68	80.64 ± 0.43	46.21 ± 0.89
 sample 	34.35 ±0.62	52.14 ± 0.19	27.74 ± 0.74	56.69 ±0.62	79.54 ± 0.88	45.19 ± 0.75
gCAS	50.01 ±0.62	55.56 ± 0.59	51.21 ± 1.74	76.37 ± 1.60	77.70 ± 1.46	79.99 ± 1.03
GDPL	31.89±0.96	50.14 ±0.79	24.99 ±1.14	-	-	-
+ sample	34.60 ±0.47	45.01 ± 0.24	31.54 ± 0.80	-	-	-
DiaAdv	40.97 ±0.95	53.44 ± 0.50	36.84 ± 1.30	-	-	-
 sample 	41.71 ±0.47	56.46 ± 0.45	36.28 ± 1.48	-	-	-
PEDP	64.63 ±0.16	77.03 ±1.39	61.77 ±1.01	84.12 ±0.38	91.66 ±0.52	81.19 ±0.4
 planning 	35.92 ±0.54	51.93 ± 0.33	30.10 ± 0.69	57.85 ±0.68	80.64 ± 0.43	46.21 ± 0.89
 ensemble 	64.34 ±0.29	77.63 ± 2.04	60.85 ± 1.54	83.31 ±0.55	91.66 ± 0.78	80.10 ± 0.55
 sample 	66.95 ±0.45	78.11 ± 3.03	65.02 ± 1.22	84.74 ±0.55	92.07 ± 0.97	81.30 ± 0.82

Table 2: Standard evaluation results. We report the mean and standard deviation over 5 runs.

Experiments

Dialog pair	Win	Lose	Tie	α
PEDP vs. DiaSeq	41.7	31.3	27.0	0.820
PEDP vs. DiaAdv	36.5	27.6	35.9	0.856
PEDP vs. GDPL	32.6	26.5	40.9	0.839

Table 3: Human evaluation results. We report the mean over 9 judges and Krippendorff's alpha (α) that measures the inter-rater reliability. Typically, results are considered reliable if $\alpha > 0.800$.

Thank you!